AMD E2-6110 vs AMD A4-5000

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

AMD E2-6110 or AMD E2-6110 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The AMD E2-6110 features 4 processor cores and has the capability to manage 4 threads concurrently.
It was released in Q2/2014 and belongs to the 4 generation of the AMD E series.
To use the AMD E2-6110, you'll need a motherboard with a AM1 socket.
The AMD A4-5000 features 4 processor cores and has the capability to manage 4 threads concurrently.
It was released in Q3/2013 and belongs to the 4 generation of the AMD A series.
AMD E Family AMD A
4 Generation 4
AMD E2-6110 Name AMD A4-5000
Mobile Segment Mobile
AMD E1/E2-6000 Group AMD A4-5000
 
 

CPU Cores and Base Frequency

The AMD E2-6110 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD E2-6110 is 1.5 GHz
The AMD A4-5000 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD A4-5000 is 1.5 GHz
4 Threads 4
No Hyperthreading No
No Overclocking Yes
4 CPU Cores 4
4x Cores 4x
normal Core architecture normal
1.5 GHz Frequency 1.5 GHz
 
 

Internal Graphics

The AMD E2-6110 has integrated graphics, called iGPU for short.
Specifically, the AMD E2-6110 uses the AMD Radeon R2 (Beema), which has 128 texture shaders
and 2 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The AMD A4-5000 has integrated graphics, called iGPU for short.
Specifically, the AMD A4-5000 uses the AMD Radeon HD 8330, which has 128 texture shaders
28 nm Technology 28 nm
0.5 GHz GPU frequency 0.5 GHz
2 Execution units 2
6 Generation 5
-- GPU (Turbo) --
128 Shaders 128
-- Max. displays --
12 Direct X 11.1
2.0 GB Max. GPU Memory 2.0 GB
Q1/2015 Release date Q2/2013
AMD Radeon R2 (Beema) GPU name AMD Radeon HD 8330
 
 

Artificial Intelligence and Machine Learning

-- AI hardware --
-- AI specifications --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
No VP8 No
Decode h264 Decode
Decode / Encode JPEG Decode / Encode
Decode AVC Decode
No AV1 No
No VP9 No
No h265 / HEVC (8 bit) No
No h265 / HEVC (10 bit) No
Decode VC-1 Decode
 
 

Memory & PCIe

Yes AES-NI Yes
-- Bandwidth --
0 bytes Max. Memory 0 bytes
pci PCIe pci
No ECC No
DDR3L-1600 Memory type DDR3L-1600
1 Memory channels 2
 
 

Thermal Management

The processor has a thermal design power (TDP) of 15 W watts.
TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
-- Tjunction max --
15 W TDP (PL1 / PBP) 15 W
 
 

Technical details

The AMD E2-6110 is manufactured using a 28 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
In total, this processor boasts a generous 2.0 MB cache.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
The AMD A4-5000 is manufactured using a 28 nm process.
28 nm Technology 28 nm
SSE4a, SSE4.1, SSE4.2, AVX ISA extensions SSE4a, SSE4.1, SSE4.2, AVX
AMD-V Virtualization AMD-V
Beema (Puma) Architecture Kabini (Jaguar)
AM1 Socket
x86-64 (64 bit) Instruction set (ISA) x86-64 (64 bit)
2.0 MB L3-Cache 2.0 MB
-- Chip design --
0 bytes L2-Cache 0 bytes
-- Part Number --
Q2/2014 Release date Q3/2013
Operating systems
Technical data sheet Documents Technical data sheet
-- Release price 115 $