HiSilicon Kirin 650 vs Qualcomm Snapdragon 617

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

HiSilicon Kirin 650 or HiSilicon Kirin 650 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The HiSilicon Kirin 650 features 8 processor cores and has the capability to manage 8 threads concurrently.
It was released in Q2/2016 and belongs to the 4 generation of the HiSilicon Kirin series.
HiSilicon Kirin Family
HiSilicon Kirin 650 Group
HiSilicon Kirin 650 Name Qualcomm Snapdragon 617
4 Generation --
Mobile Segment --
 
 

CPU Cores and Base Frequency

The HiSilicon Kirin 650 has 8 CPU cores and can calculate 8 threads in parallel.
The clock frequency of the A-Core is 2.0 GHz.
The number of CPU cores greatly affects the speed of the processor and is an important performance indicator.
Processors with hybrid (big.LITTLE) architecture strike a balance between performance and power efficiency, making them ideal for mobile devices.
No Overclocking No
4x Cortex-A53 Cores B None
hybrid (big.LITTLE) Core architecture --
2.0 GHz A-Core Frequency None
8 CPU Cores --
4x Cortex-A53 Cores A None
8 Threads --
1.7 GHz B-Core Frequency None
No Hyperthreading No
 
 

Internal Graphics

The HiSilicon Kirin 650 has integrated graphics, called iGPU for short.
Specifically, the HiSilicon Kirin 650 uses the ARM Mali-T830 MP2, which has 32 texture shaders
and 2 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The Qualcomm Snapdragon 617 does not have integrated graphics.
Q4/2015 Release date --
-- Max. displays --
28 nm Technology --
ARM Mali-T830 MP2 GPU name
Midgard 4 Generation --
11 Direct X --
32 Shaders --
-- GPU (Turbo) --
2 Execution units --
0.9 GHz GPU frequency --
0 bytes Max. GPU Memory 0 bytes
 
 

Artificial Intelligence and Machine Learning

-- AI hardware --
-- AI specifications --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
Decode / Encode VP8 --
No VP9 --
No AV1 --
No VC-1 --
Decode / Encode h265 / HEVC (8 bit) --
Decode h265 / HEVC (10 bit) --
No AVC --
Decode / Encode h264 --
Decode / Encode JPEG --
 
 

Memory & PCIe

pci PCIe pci
LPDDR3-933 Memory type
2 Memory channels --
No ECC No
-- Bandwidth --
No AES-NI No
0 bytes Max. Memory 0 bytes
 
 

Thermal Management

TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
-- Tjunction max --
 
 

Technical details

The HiSilicon Kirin 650 is manufactured using a 16 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
Cortex-A53 / Cortex-A53 Architecture --
Q2/2016 Release date --
Socket
16 nm Technology --
None Virtualization
ISA extensions
-- Part Number --
-- Release price --
Technical data sheet Documents Technical data sheet
0 bytes L3-Cache 0 bytes
Android Operating systems
0 bytes L2-Cache 0 bytes
Chiplet Chip design --
ARMv8-A64 (64 bit) Instruction set (ISA)